
Proceedings of the 2003 International Conference on Auditory Display, Boston, MA, 6-9 July 2003

 ICAD03-1

LATENCY MEASUREMENT OF A REAL-TIME VIRTUAL ACOUSTIC
ENVIRONMENT RENDERING SYSTEM

Joel D. Miller1 Mark R. Anderson1 Elizabeth M. Wenzel2 Bryan U. McClain3

Spatial Auditory Displays Lab
NASA Ames Research Center

Mail Stop 262-6
Moffett Field, CA 94035-1000 USA
jdmiller@mail.arc.nasa.gov

1QSS Group Inc., 2NASA Ames Research Center, 3San Jose State University

ABSTRACT

Techniques for measuring and estimating the end-to-end latency
and component latencies of a virtual acoustic environment are
discussed. These key parameters impact the responsiveness and,
hence, “realism” of a virtual environment.

1. INTRODUCTION

Latency provides an important indicator of the dynamic
performance of a virtual acoustic environment (VAE) and it is
critical that it be carefully defined and measured. In a VAE, the
end-to-end latency refers to the time elapsed from the
transduction of an event or action, such as movement of the
head, until the consequences of that action cause the equivalent
change in the virtual environment. Latencies are contributed by
individual components of the system, including tracking
devices, signal processing algorithms, device drivers, and
communication lines. Due to variability in the way these
components interact, a system's end-to-end latency will vary
over time. Thus, measurements of the mean, standard deviation,
and range are needed to characterize this parameter.

Psychoacoustic data can provide guidelines regarding
whether a given system’s end-to-end latency meets perceptual
requirements [1]. For example, examination of the head motions
that listeners use to aid localization suggests that the angular
velocity of some head motions (in particular, left-right yaw)
may be as fast as 175°/s for short time periods (about 1s). From
psychophysical studies of the minimum audible movement
angle for real sound sources (listener position fixed), one can
infer that the minimum perceptible end-to-end latency for a
virtual audio system should be no more than about 70ms for a
source velocity of 180°/s. If one assumes that these thresholds
are similar for all kinds of relative source-listener motion (e.g.,
when the source is fixed and the listener is moving), then
latencies greater than 70ms may exceed the perceptible
threshold during active localization. Such latencies could
potentially result in short-term under-sampling (compression) of
relative listener-source motion as well as positional instability
of the simulated source.

2. LATENCY MEASUREMENT TOOLS

In this study, the latency of the VAE rendering system SLAB
[2] is analyzed. Since SLAB is developed under Windows 2000
(aka Win2k), some of the following latency measurement
techniques use Microsoft Windows APIs (application
programming interfaces). The features used, however, are fairly

standard and should be available on other platforms. Source
code demonstrating these techniques is available to the public
as part of the SLAB User Release [2].

When measuring latency, one needs an accurate way to
measure the interval of time between two events. These events
can be inside or outside of a computer. VAE end-to-end latency
is an example of an interval between two external events where
the first event is the user crossing a threshold and the second
event is the user hearing the rendered result of the threshold
crossing. API latency is an example of an interval between an
internal event and an external event where the first event is the
time at which an API call is made and the second event is the
user hearing the rendered result of the API call.

2.1. External Events

To measure the interval between events outside of a computer,
an interval counter or digital storage oscilloscope can be used to
measure the time difference between rising edges of two
electrical signals. In some cases, a transducer is required to
convert the event of interest into an electrical signal (e.g., an
optical switch to capture the time at which an object crosses a
physical threshold).

2.2. Internal Events

When measuring event intervals inside of a computer, time
functions can be used to time stamp events. The difference
between event time stamps then provides the interval value.
Often, multiple time functions exist, so one must be careful to
select the timer with the greatest accuracy and resolution.

In the Win32 SDK (software development kit), the
QueryPerformanceCounter() function provides an
extremely accurate timer with resolution of a microsecond or
better (depends on OS and CPU).

2.3. Mixed External and Internal Events

To measure the interval between an event inside and an event
outside of a computer, the internal event needs to be
externalized. An internal event can be externalized by writing to
the serial port or the parallel port when the internal event
occurs. Of course, the latency of the port write must be
determined and stable.

Proceedings of the 2003 International Conference on Auditory Display, Boston, MA, 6-9 July 2003

 ICAD03-2

2.3.1. Serial Port Externalization

For this study, the serial port was the preferred technique for
externalizing an internal event because it is supported under
both Win98/ME and Win2k. The drawback compared to the
parallel port is increased difficulty in use and increased latency.
Once the serial port is configured with CreateFile(), a
rising edge can be created on pin 3 of a 9 pin serial port with
the call:

char chr = 0x00;
WriteFile(hCom, &chr, 1, &numWrite, NULL);

Serial port loopback tests under Win98, WinME, and

Win2k on systems ranging from 450MHz to 1.5GHz yielded
approximately a 0.5ms write/read time. Thus, the internal event
is externalized in less than 0.5ms.

2.3.2. Parallel Port Externalization

Although the parallel port is extremely easy to use and has very
low latency under Win98/ME, it is difficult to use under Win2k.
Under Win98/ME, a rising edge can be created on pin2 of the
parallel port with the two calls:

_outp(0x378, 0);
_outp(0x378, 1);

Under Win2k, the _outp() instruction is a privileged kernel
mode instruction. Since the user’s code executes outside of the
kernel, the _outp() instruction will cause an exception error
when executed under Win2k.

For those using Win98/ME or another operating system
where the _outp() call is allowed (e.g., Linux with root
privilege), the parallel port may very well be the preferred
option. Parallel port loopback tests under WinME on a 450MHz
machine yielded a 13µs write/read time. Thus, the internal event
is externalized in less than 13µs.

3. SLAB LATENCY COMPONENTS

To measure SLAB’s latency, two approaches were taken, a low-
level individual latency component analysis, and a high-level
user parameter analysis. In the low-level approach, each
contributing component was isolated and analyzed. In the high-
level approach, end-to-end latency data was collected for
several permutations of SLAB user parameters. In this section,
the low-level perspective will be discussed. The high-level
perspective will be discussed in the following section.

3.1. Latency Measurement

A swing-arm apparatus [3] was used to measure tracker latency
and end-to-end latency. An electromagnetic Polhemus Fastrak
tracker sensor is attached to a mechanical swing-arm. When the
swing-arm is pushed, it passes through an optical switch (Figure
1, Ch1), triggering a single-shot oscilloscope capture of tracker
serial output (Figure 1, Ch2), tracker library output (Figure 1,
Ch3), and SLAB headphone output (Figure 1, Ch4).

The SLABLatency utility monitors the location of the
sensor using an in-house tracker driver. SLABLatency is
configured ahead of time to know the location of the optical
switch. Thus, at the same moment the optical switch is
activated, SLABLatency changes the SLAB scenario, causing a
change in the headphone display. The interval from optical

switch pulse to headphone display change is SLAB’s end-to-
end latency (Figure 1, “C1->C4 Dly”).

Figure 1. Latency measurement oscilloscope
screenshot. Ch1: optical switch, Ch2: tracker serial
communications, Ch3: tracker library serial port write,
Ch4: SLAB headphone display. Output buffer size =
4096 bytes, write buffer size = 256 bytes.

3.2. Tracker Latency

Two components contribute to Fastrak tracker latency, tracker
update rate and EM (electromagnetic) field sampling.

3.2.1. Tracker Update Rate Latency

The tracker was configured to operate at its highest update rate,
120Hz (update period = 8.3ms). Communication with the
tracker occurred over an RS232 serial connection. In streaming
mode, the tracker generates steady bursts of serial data at 8.3ms
intervals (Figure 1, Ch2). Since the optical switch can be
crossed at any time within this interval, a variable latency exists
of 0.0-8.3ms with a uniform probability of any given latency
value occurring at any given time.

3.2.2. Tracker Electromagnetic Field Sampling Latency

Attaching an electromagnetic pickup to the Fastrak source
revealed that the tracker locates the sensor by sampling three
EM bursts from the source. The three bursts last 1.5ms each.
Since the sensor’s location can vary slightly between the three
bursts, the midpoint of the middle burst is defined as the EM
field sampling time. The EM sampling latency is the interval
from this point to the beginning of serial output. This interval
was measured to be 3.5ms.

3.3. Serial Communication Latency

The tracker is configured to communicate with a computer over
a 115,200 bps (bits per second) RS232 serial line. The sensor
location data packet consists of 17 data bytes (8 bits per byte).
Each serial data byte contains an additional start bit and stop
bit. Thus, the total number of bits transmitted per data packet is
170 bits. At 115,200 bps, the serial communication latency is:
170 bits / 115,200 bps = 1.5ms. This is consistent with the
measured width of the serial bursts in Figure 1, Ch2.

Proceedings of the 2003 International Conference on Auditory Display, Boston, MA, 6-9 July 2003

 ICAD03-3

3.4. Tracker Driver Latency

The tracker driver latency was measured using serial port
externalization. Inside the SLAB API update loop, the tracker
driver blocks, waiting for a tracker data packet. When new data
is available, the driver unblocks and calls a SLAB API function
with the new location data. A serial port write was inserted
between the blocked tracker driver function and the SLAB API
function. The tracker driver latency is the difference between
the last serial bit read (Figure 1, Ch2) and the serial port write
(Figure 1, Ch3). Although it is difficult to see in Figure 1, using
the appropriate time base, the tracker driver latency was
measured to be 0.4-0.5ms.

3.5. API Latency

The API latency is the interval between an API scenario update
and the display of the rendered result of that update (Figure 1,
“C3->C4 Dly”). In SLAB, this is largely a function of the
processing frame size, the sound output buffer management
algorithm, and the sound peripheral driver latency. A fourth
contributing factor can be the processing parameter smoothing
technique, but for the purposes of this analysis, parameter
smoothing is not considered (parameter smoothing is disabled
using the SLAB API call SmoothTime(0.0)).

3.6. Frame Size Latency

Frame size (aka block size) refers to the number of sound
samples processed at a time. When a new frame of input is
available, scenario parameters (e.g., listener position) are
converted to processing parameters (e.g., filter taps). Excluding
parameter smoothing, processing parameters do not change
during the processing of the frame. Thus, the entire frame is
processed using one set of scenario parameters. If a scenario
update occurs just prior to computing the frame, little latency is
introduced. However, if the scenario update occurs just after a
frame is processed, a frame size amount of latency is
introduced. As frame size increases, scenario update rate
decreases and API latency and API latency jitter increase.
Unfortunately, small frame sizes are costly to compute, so a
trade-off exists between CPU usage and latency.

In SLAB, the frame size is 32 samples (sampling rate =
44,100 samples/s). To preserve CPU resources, the head-related
impulse responses (HRIRs) are updated every other frame,
yielding a maximum frame latency of 1.5ms. Since the timing of
the scenario update is unconstrained, the frame size latency is
stochastic and uniformly distributed between 0.0-1.5ms. As will
be seen in the next section, this latency is absorbed within the
sound output buffer management algorithm.

3.7. Output Buffer Latency

The Microsoft DirectSound API provides a low-latency
interface to a sound output peripheral. After a frame of samples
is processed, it is transferred to a DirectSound output buffer.
Selecting the size of the output buffer depends on system load.
If the CPU is heavily taxed, the Windows scheduler may starve
SLAB, resulting in a buffer underflow and, possibly, an audible
artifact. Large buffer sizes help protect against this situation
because samples continue to play while SLAB awaits attention
from the scheduler. An output buffer size (OBS) between 4096
bytes (23.2ms) and 8192 bytes (46.4ms) is usually sufficient to
protect against underflow.

An additional buffer, the write buffer, exists to optimize
CPU use. Since DirectSound management can be
computationally expensive, the write buffer collects multiple
frames of data before copying samples to DirectSound. The
write buffer size (WBS) is typically 256 bytes (2 frames, 1.5ms)
or 512 bytes (4 frames, 2.9ms).

To analyze the expected latency impact of the output buffer
management algorithm two assumptions will be made:

(1) Since the output buffer exists to absorb unexpected CPU
usage spikes, most of the time it should be full or near full. It
will be assumed it is always as full as the buffer management
algorithm will allow.

(2) In theory, a scenario update can occur between any two
frames. It will be assumed that rendering the SLAB scenario
consumes negligible CPU resources (e.g., one sound source in
an anechoic simulation). Thus, the frame processing thread will
process all the frames it can until it is forced to stop due to a full
output buffer. The result of this assumption is that all frames in
the write buffer are processed with the same scenario
parameters.

Given assumption 1, after the write buffer is copied to the
output buffer, the output buffer is full. Thus, processing
suspends awaiting space in the output buffer. Given assumption
2, the write buffer basically becomes the frame, with the write
buffer size replacing the frame size. Hence, a latency of 0.0-
WBS (ms) is introduced after an API scenario update. Once a
write buffer amount of samples have played out of the output
buffer, all frames that fit within a write buffer are processed and
copied to the output buffer and the suspend-and-fill cycle
repeats. This behavior results in a constant latency of (OBS -
WBS) existing in addition to the write buffer latency. Since the
timing of the scenario update is unconstrained, the resultant
output buffer latency is stochastic and uniformly distributed
between (OBS - WBS) and OBS. The mean of this range will
be termed the Estimated Buffer Latency (EBL). As will be seen
in the next section, EBL can serve as a rough approximation of
API latency. The jitter introduced by the output buffer
management algorithm is equal to the write buffer size.

3.8. Sound Peripheral Driver Latency

DirectSound can use one of two driver models, VxD
(Win98/ME) or WDM (Win98/ME/2k). The WDM driver may
include a component called the KMixer that can add up to 30ms
of latency. Subtracting the Estimated Buffer Latency from
measured API latency yielded 2.1ms for a driver not using the
KMixer (Creative Audigy, Win2k) and 26.3ms for a driver
using the KMixer (M Audio Delta66, Win2k).

3.9. Client/Server Communication Latency

Thus far, it has been assumed the API latency is confined to the
host computer (i.e., the API call occurs on the same computer
rendering the virtual environment). In client/server mode, the
API call occurs on a client computer while rendering takes
place on a separate server computer. In SLAB, a TCP/IP
sockets interface is used to communicate between the client and
the server over a dedicated 100MBit Ethernet connection.

The client/server communication latency was measured by
time stamping the socket packet sends and receives. The client
and server timers were synchronized using serial port

Proceedings of the 2003 International Conference on Auditory Display, Boston, MA, 6-9 July 2003

 ICAD03-4

externalization. The measured latency values clustered about
four points, 0.1ms (33%), 0.5ms (17%), 1.2ms (33%), and
1.5ms (16%), with outliers as high as 3ms.

The client and server software can be executed on the same
computer in a “pseudo” client/server mode. In this mode, the
measured latency was 0.2ms.

3.10. Estimated End-to-End Latency

Summing the component latencies from the preceding sections
(values in bold type) yields the following estimates for host-
mode end-to-end latency (in ms, excluding the KMixer):

tmin = 0.0 + 3.5 + 1.5 + 0.4 + OBS - WBS + 2.1
tmax = tracker update period + 3.5 + 1.5 + 0.5 + OBS + 2.1
tavg = (tmin + tmax) / 2
 = 7.6 + tracker update period/2 + OBS - WBS/2

The latency values should be distributed in a trapezoidal or
triangular distribution due to the cascade of the uniformly
distributed tracker update rate and output buffer latencies. This
distribution provides an estimate of the latency jitter in the
system. For client/server mode, the following offsets should be
added to the estimates above: 0.1ms to tmin, 1.5ms to tmax, and
0.8ms to tavg.

4. END-TO-END LATENCY MEASUREMENTS

End-to-end latencies were measured using the swing-arm
apparatus described in Section 3.1 for a VAE system consisting
of a Dell Workstation PWS340 (Pentium 4, 2.2 GHz, 512 MB
RAM, Windows 2000 SP2), a Creative Audigy sound card
(driver e10kx2k.sys v5.12.01.0129-1.00.0010), and a Polhemus
Fastrak head-tracker (update rate = 120 Hz). SLAB v5.0.1 was
used to convolve an internally generated input signal with a
128-pt. HRIR in a single sound source anechoic simulation.

End-to-end latencies were measured for the three system
modes described in section 3.9 (host mode, client/server mode,
and pseudo client/server mode). For each mode, 25 latency
measurements were taken for different combinations of the
SLAB API parameters: output buffer size (4096 and 8192
bytes) and write buffer size (128, 512, 1024 and 2048 bytes; see
section 3.7). Measurements were also made for output buffers
of 1024 and 2048 bytes. However, it was observed that these
smaller buffer sizes resulted in significant buffer underflows
and audible artifacts. Thus, data are only reported for the larger
output buffers that would be usable in practice.

Since the measured latencies for the three system modes
were within 0.8ms of one another, only the host-mode data is
displayed in Figure 2. To aid in the interpretation of the results,
the values in Figure 2 are plotted as a function of Estimated
Buffer Latency (EBL). As described in section 3.7, EBL
represents the mean latency due to the output buffer size (OBS)
and the write buffer size (WBS):

EBL = (OBS (bytes) - WBS (bytes) / 2) /
 (44.1 samples/ms * 2 (bytes/sample)/ch * 2 ch)
 = (OBS (bytes) - WBS (bytes) / 2) / 176.4 bytes/ms

The cluster of points on the left side of Figure 2 refers to an
OBS of 4096 while the cluster on the right refers to an OBS of
8192. For data points within these clusters, the WBS values
from left-to-right are: 2048, 1024, 512 and 128.

In general, the data show that the predicted and empirical
values match within less than 1 ms. Further, end-to-end

latencies are about the same no matter which system mode is
used, as long as a dedicated network is available for
client/server mode. For a given tracker update rate, the pattern
of the data also indicates that the OBS largely impacts the mean
latency, while the WBS affects the latency jitter (i.e., the range
of possible latency values). Larger WBS values produce more
jitter but a smaller mean latency. Thus, there is a trade-off
between jitter and latency for decreasing values of the WBS. It
should be remembered that the tracker update rate has a
significant impact on both mean latency and jitter. For example,
if the tracker update rate is reduced, mean latency would
increase by a fixed amount (i.e., all data points would shift
upward) and the overall latency jitter would also increase.

Figure 2. Predicted and measured end-to-end latency.
Circles: predicted minimum and maximum latency (tmin,
tmax). Points: predicted average latency (tavg).
Diamonds: mean measured latency. Error bars: ±2
standard deviations for the empirical data. Linear best
fits for the mean predicted (dashed line) and empirical
latencies (solid line) are indicated.

Thus, in order to minimize both latency and jitter, the data
suggest that a user should choose the fastest tracker update rate
possible and the smallest OBS and WBS values that avoid
buffer underflow.

5. CONCLUSIONS

This paper describes a set of tools for performing high-precision
latency measurement. Using these tools, formulas were derived
to characterize and predict the end-to-end latency of SLAB, a
real-time VAE rendering system. The accuracy of the formulae
was verified by comparison to empirical data. Future work will
include analyzing the effects of system load, parameter
smoothing, and alternate buffer management techniques on
latency and latency jitter.

6. REFERENCES

[1] E.M. Wenzel, “The role of system latency in multi-sensory
virtual displays for space applications,” Proc. HCI Intl.,
New Orleans, LA, August 2001, pp. 619-623.

[2] http://human-factors.arc.nasa.gov/SLAB
[3] B.D. Adelstein, E.R. Johnston, and S.R. Ellis, “Dynamic

Response of Electromagnetic Spatial Displacement
Trackers,” Presence, vol. 5, no. 3, pp. 302-318, 1996.

Acknowledgements: Funding for this work was provided by
the Airspace Operations Systems (AOS) Project of NASA's
Airspace Systems Program.

Host Mode
Empirical

y = 1.0127x + 12.384
R2 = 0.999

Predicted
y = x + 11.7

R2 = 1

0

10

20

30

40

50

60

70

15 20 25 30 35 40 45 50

Estimated Buffer Latency (ms)

	INTRODUCTION
	LATENCY MEASUREMENT TOOLS
	External Events
	Internal Events
	Mixed External and Internal Events
	Serial Port Externalization
	Parallel Port Externalization

	SLAB LATENCY COMPONENTS
	Latency Measurement
	Tracker Latency
	Tracker Update Rate Latency
	Tracker Electromagnetic Field Sampling Latency

	Serial Communication Latency
	Tracker Driver Latency
	API Latency
	Frame Size Latency
	Output Buffer Latency
	Sound Peripheral Driver Latency
	Client/Server Communication Latency
	Estimated End-to-End Latency

	END-TO-END LATENCY MEASUREMENTS
	CONCLUSIONS
	REFERENCES

